Очень просто о кондиционерах

Кондиционеры уже давно появились на рынке, а за последние 10 лет стали по-настоящему общедоступными. При этом далеко не все знают принцип их работы. Если мы не охлаждаем улицу, то зачем нужен блок снаружи? Сколько уличного воздуха приходит в комнату через соединительные трубопроводы? И т.д.

Предлагаю вашему вниманию общедоступный научно-популярный познавательный рассказ. А начнем мы с самого начала – с получения холода.

Как получить холод?

В научном мире эта тема называется «Физические основы получения холода». И перечисляется более десятка таковых основ. Но это сложно и скучно. Пойдем простым путём. Нам нужно получить холод в комнате. Как это сделать?

  1. Создать холод (энергию холода) из некой другой энергии.
  2. Принести холод из другой комнаты.

Вроде бы пока всё просто – у нас всегда и везде есть два варианта обзавестись чем-либо – сделать самому или стащить у кого-то.

Вот, например, все обогреватели-отопители, работающие от электричества, тепло создают сами. А если вентилятором нагнетать горячий летний воздух с улицы, то здесь мы тепло не создаем, а переносим (с улицы в комнату). Какова же эффективность обоих методов? В первом случае мы тратим электричества ровно столько, сколько и получаем тепла (ТЭН, потребляющий 1кВт, даёт ровно 1кВт тепла), т.е. КПД получается 100%. Во втором же случае с использованием вентилятора, потребляющего 1кВт с улицы можно нагнать и 5 и 10 и 20кВт тепла! Пожарче улица была бы! И что же? КПД будет 500, 1000 или 2000%? Совсем нет, но факт, что второй способ эффективнее, очевиден.

Кондиционеры - переносчики холода

Кондиционер работает именно по второму пути. Он холод не создает, а приносит с улицы. Как – увидим чуть ниже, а пока ещё одно сравнение из современной жизни.

Рассмотрим работу инженера и менеджера по продажам. Инженер занимается проектированием и зарабатывает тем, что разрабатывает и создает всевозможную технику. Он может и год и два потратить на разработки. Менеджер же эту технику переносит, точнее, перепродает, зарабатывая на наценке. И кто лучше живёт в нашей современности? :)

Так вот, вернемся к кондиционерам. Потому-то все они состоят из двух блоков, что именно !переносят! холод. Первый блок отправитель холода, второй получатель (или, с точки зрения тепла, наоборот: первый блок получатель тепла, а второй его отправитель). Адресант и адресат. Так называемые, наружный и внутренний блоки.

Как кондиционеры переносят холод?

Очень просто – для реализации процесса переноса нужно некое вещество-носитель. Зимой на улице холодно и носитель там охлаждается, а в комнате нагревается, при этом охлаждая воздух в комнате. Т.е. носитель перенес температуру с улицы в комнату.

Но откуда взять холод в летнюю жару? Ответ прост – из той же самой жары. Надо только подойти к вопросу немного иначе и переносить не температуру, а энергию. Если перенести энергию из комнаты на улицу, то в доме энергии останется меньше и станет холоднее, на улице же будет теплее.

Как вещество-энергоносец переносит энергию? Обратимся к свойствам веществ при разных давлениях. Например, к свойствам воздуха. Если взять некий объем воздуха при температуре 25°С и давлении 1атм. (точка 1, рис.1) и сжать его до 200атм (точка 2), то его температура увеличится до 53°С. Теперь охладим его уличным воздухом до 40°С (точка 3) и снова приведём к давлению 1атм (точка 4), при этом он охладится до 8°С – вот он и холод! Такой температурой можно и комнату охлаждать! Собственно, вот и всё – задача выполнена!

Проблема выбора теплоносителя

Рассмотренный выше способ получения холода с использованием воздуха находит своё применение в холодильной технике для получения температур около -100С, но абсолютно не годится для кондиционирования:

  • Во-первых, как мы увидели, воздух в качестве теплоносителя неудобен, т.к. 200атм. – очень высокое давление, требующее высокой потребляемой мощности для его достижения.
  • Во-вторых, и это можно показать, нам понадобится большой расход воздуха.
  • Наконец, в третьих, у любого вещества есть замечательное свойство потреблять или отдавать энергию, не изменяя собственную температуру. Это происходит при изменении агрегатного состояния. Например, если на нагрев 1кг воды при атмосферном давлении с 5С до 15С потребуется 42кДж энергии, с 15С до 25С - столько же (зависимостью теплоёмкости от температуры можно пренебречь) и с 85С до 95С - всё те же 42кДж, то с 95С до 105С - совсем нет. Секрет в том, что при 100С вода начнет кипеть и сколько энергии не подводи, пока вся не выкипит, дальнейшего нагрева мы не увидим - все подведенные джоули уйдут на изменение её агрегатного состояния. А энергия, необходимая для выкипания 1кг воды потрясающе велика! Это целых 2500кДж! Итого, нагрев с 95С до 105С нам влетит в 2542кДж! Почувствовали разницу в 60 раз? А что это означает на практике? Это означает, что если необходимо перенести, к примеру, 25000кДж при разности температур 10С, то нам понадобится 600кг воды без изменения её агрегатного состояния или же всего 10кг с изменением. В 60 раз меньше! Но, заметите вы, температуры 95С и 105С можно использовать в отоплении, но никак не для получения холода. Действительно, так оно и есть. Но отмечу, что наш пример был приведен для атмосферного давления, а если теплоноситель-воду взять при более низком давлении, то температура кипения понизится. Но чтобы вода кипела при желаемых 10С необходимо абсолютное давление около 0.02ата - это почти вакуум - через чур сложнодостижимое условие.

Итоговый вывод прост - необходимо найти удобный теплоноситель - чтобы получение температур порядка 10С достигалось при "разумных" давлениях плюс, по возможности, использовался тепловой эффект при смене агрегатного состояния.

Появление фреонов

Вот так и были рождены хладоны, часто именуемые фреонами (на самом деле правильнее использовать термин "хладон", а фреон - это лишь запатентованный хладон фирмы E. I. du Pont de Nemours and Co. (США)). Проследуем без остановки пункты, проясняющие их состав, ассортимент, специфические свойства и др. Сразу озвучим тот факт, что с их помощью реализуется холодильный цикл, благодаря которому достигаются температуры в 5-15С, причем максимальное давление цикла не превышает 20атм (в более новых фреонах - 30атм) и вместе со всеми преимуществами используется теплота парообразования и конденсации.

Итак, современные кондиционеры работают на фреоне, сжатие которого осуществляется в компрессоре, охлаждение сжатого газа, а заодно и его перевод в жидкое состояние - в темплообменнике-конденсаторе, охлажденный сжатый фреон расширяется в дросселе (или терморегулирующем вентиле или в капилляре). В результате он охлаждается и поступает в теплообменник-испаритель, где, отдавая холод в комнату, нагревается, испаряется и снова нагревается, следуя в компрессор. Цикл замкнулся.

Теги:
#Монтаж
#Терминология

Оставить комментарий

Ваше имя:
E-mail:
(Не обязательно)
Текст комментария:
Введите код с картинки:  

Дополнительные материалы

ПРОФЕССИОНАЛЬНОЕ обучение проектированию систем вентиляции и кондиционирования

Можно ли зимой включать кондиционер на обогрев

Вытяжка в стену: как подобрать и правильно сделать своими руками

3 способа сделать увлажнитель воздуха для квартиры и дома своими руками

Всё самое важное про турбодефлекторы: что такое, принцип работы, внешний вид, как подобрать

Вентиляция в квартире: самое полное руководство простым языком

Встраиваемая вытяжка на кухне: важные нюансы по устройству и подключению

Вытяжка в дачном туалете: как сделать правильно своими руками